
Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 7 No. 1.1
Edición Especial I 2026
Página 935
Esposito, A., Avola, E., Jachetti, A., Reese,
J., Rizzi, A., Robinson, P., y Valentini, G.
(2020). Explainable machine learning for
early assessment of COVID-19 risk
prediction in emergency departments. IEEE
Access, 8, 196299–196325.
Castaño, S. (2025). Artificial intelligence in
public health: Opportunities, ethical
challenges and future perspectives.
COVID-19 anonymized clinical dataset.
(2020). Figshare.
Hasan, M., Bath, P., Marincowitz, C., Sutton,
L., Pilbery, R., Hopfgartner, F., Mazumdar,
S., Campbell, R., Stone, T., Thomas, B.,
Bell, F., Turner, J., Biggs, K., Petrie, J., y
Goodacre, S. (2022). Pre-hospital prediction
of adverse outcomes in patients with
suspected COVID-19: Development,
application and comparison of machine
learning and deep learning methods.
Computers in Biology and Medicine, 151.
Ikram, A., y Pillay, S. (2022). Admission vital
signs as predictors of COVID-19 mortality:
A retrospective cross-sectional study. BMC
Emergency Medicine, 22.
Pourhomayoun, M., y Shakibi, M. (2021).
Predicting mortality risk in patients with
COVID-19 using machine learning to help
medical decision-making. Smart Health, 20.
Ramlall, V., Thangaraj, P., Meydan, C., Foox,
J., Butler, D., Kim, J., May, B., Freitas, J.,
Glicksberg, B., Mason, C., Tatonetti, N., y
Shapira, S. (2020). Immune complement and
coagulation dysfunction in adverse outcomes
of SARS-CoV-2 infection. Nature Medicine,
26, 1609–1615.
Registro Público del Ecuador. (2024). Proyecto
de ley de protección de datos personales.
Richardson, S., Hirsch, J., Narasimhan, M.,
Crawford, J., McGinn, T., y Davidson, K.
(2020). Presenting characteristics,
comorbidities, and outcomes among 5700
patients hospitalized with COVID-19 in the
New York City area. JAMA, 323(20), 2052–
2059.
Souza, F., Hojo-Souza, N., Santos, E., Silva, C.,
y Guidoni, D. (2021). Predicting the disease
outcome in COVID-19 positive patients
through machine learning: A retrospective
cohort study with Brazilian data. Frontiers in
Artificial Intelligence, 4.
World Health Organization. (2020). WHO
characterizes COVID-19 as a pandemic.
Wynants, L., Van Calster, B., Collins, G., Riley,
R., Heinze, G., Schuit, E., Albu, E., Arshi,
B., Bellou, V., Bonten, M., Dahly, D.,
Damen, J., Debray, T., Jong, V., Vos, M.,
Dhiman, P., Ensor, J., Gao, S., Haller, M., y
Smeden, M. (2020). Prediction models for
diagnosis and prognosis of COVID-19:
Systematic review and critical appraisal.
BMJ, 369.
Yan, L., Zhang, H., Goncalves, J., Xiao, Y.,
Wang, M., Guo, Y., Sun, C., Tang, X., Jing,
L., Zhang, M., Huang, X., Cao, H., Chen, Y.,
Ren, T., Wang, F., Tan, X., y Yuan, Y.
(2020). An interpretable mortality prediction
model for COVID-19 patients. Nature
Machine Intelligence, 2, 283–288.
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu,
Z., Xiang, J., Wang, Y., Song, B., Gu, X.,
Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu,
S., Zhang, Y., Chen, H., y Cao, B. (2020).
Clinical course and risk factors for mortality
of adult inpatients with COVID-19 in
Wuhan, China: A retrospective cohort study.
The Lancet, 395, 1054–1062.
Esta obra está bajo una licencia de
Creative Commons Reconocimiento-No Comercial
4.0 Internacional. Copyright © Romel Elian Haro
Asipuela y José Renato Cumbal Simba.