Página 525
review. Smart Learning Environments,
10(1), 41. https://doi.org/10.1186/s40561-
023-00260-y
Luo, J., Zheng, C., Yin, J., & Teo, H. H. (2025).
Design and assessment of AI-based learning
tools in higher education: A systematic
review. International Journal of Educational
Technology in Higher Education, 22(1), 42.
https://doi.org/10.1186/s41239-025-00540-
2
Major, L., Francis, G. A., & Tsapali, M. (2021).
The effectiveness of technology-supported
personalised learning in low- and middle-
income countries: A meta-analysis. British
Journal of Educational Technology, 52(5),
1935–1964.
https://doi.org/10.1111/bjet.13116
Merino-Campos, C. (2025). The impact of
artificial intelligence on personalized
learning in higher education: A systematic
review. Trends in Higher Education, 4(2),
17.
https://doi.org/10.3390/higheredu4020017
Mirata, V., Hirt, F., Bergamin, P., & Van Der
Westhuizen, C. (2020). Challenges and
contexts in establishing adaptive learning in
higher education: Findings from a Delphi
study. International Journal of Educational
Technology in Higher Education, 17(1), 32.
https://doi.org/10.1186/s41239-020-00209-
y
Murtaza, M., Ahmed, Y., Shamsi, J. A.,
Sherwani, F., & Usman, M. (2022). AI-based
personalized e-learning systems: Issues,
challenges, and solutions. IEEE Access, 10,
81323–81342.
https://doi.org/10.1109/ACCESS.2022.3193
938
Naseer, F., Khan, M. N., Tahir, M., Addas, A.,
& Aejaz, S. M. H. (2024). Integrating deep
learning techniques for personalized learning
pathways in higher education. Heliyon,
10(11), e32628.
https://doi.org/10.1016/j.heliyon.2024.e326
28
Nye, B. D. (2015). Intelligent tutoring systems
by and for the developing world: A review of
trends and approaches for educational
technology in a global context. International
Journal of Artificial Intelligence in
Education, 25(2), 177–203.
https://doi.org/10.1007/s40593-014-0028-6
Oussous, A., Menyani, I., Srifi, M., Lahcen, A.
A., Kheraz, S., & Benjelloun, F.-Z. (2023).
An evaluation of open source adaptive
learning solutions. Information, 14(2), 57.
https://doi.org/10.3390/info14020057
Pedrazzoli, A. (2009). OPUS One—OLAT (An
artificial intelligence—multi agent based
adaptive learning environment).
Rana, M., Siddiqee, M., Sakib, M., & Ahamed,
M. R. (2024). Assessing AI adoption in
developing country academia: A trust and
privacy-augmented UTAUT framework.
Heliyon, 10(18), e37569.
https://doi.org/10.1016/j.heliyon.2024.e375
69
Reza, Z., Mazur, A., Dugdale, M. T., & Ray-
Chaudhuri, R. (2025). Small models, big
support: A local LLM framework for
teacher-centric content creation and
assessment using RAG and CAG (No.
arXiv:2506.05925). arXiv.
https://doi.org/10.48550/arXiv.2506.05925
Sajja, R., Sermet, Y., Cikmaz, M., Cwiertny, D.,
& Demir, I. (2024). Artificial intelligence-
enabled intelligent assistant for personalized
and adaptive learning in higher education.
Information, 15(10), 596.
https://doi.org/10.3390/info15100596
Salas, S., & Yang, Y. (2022). Artificial
intelligence applications in Latin American
higher education: A systematic review.
International Journal of Educational
Technology in Higher Education, 19(1), 21.