
Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 6 No. 9
Septiembre del 2025
Página 177
avances y desafíos. Comisión Económica
para América Latina y el Caribe.
https://www.cepal.org/es/publicaciones/490
02-educacion-transformacion-digital-
america-latina-caribe-avances-desafios
Ciloglu, A., Uzunboylu, H., & Altinay, F.
(2023). Augmented reality for biology
learning: Effects on achievement and
motivation. Interactive Learning
Environments, 31(5), 3554–3572.
https://doi.org/10.1080/10494820.2020.185
5217
Cruz, P., & Bravo, J. (2024). Recursos
tecnológicos y alfabetización científica en
educación básica. Revista Innova Educación,
6(1), 45-59.
https://doi.org/10.35622/j.rie.2024.01.004
Chechan, S., Kutsel, E., & Yaroshenko, O.
(2023). Using Desmos to enhance functional
thinking in secondary mathematics.
International Journal of Mathematical
Education in Science and Technology,
54(12), 4351–4370.
https://doi.org/10.1080/0020739X.2022.212
2034
Diab, I. (2024). The effect of PhET on problem-
solving in chemistry in secondary school.
Journal of Chemical Education, 101(2),
456–467.
https://doi.org/10.1021/acs.jchemed.3c0052
2
Espinoza, C. (2024). Plataformas híbridas y
razonamiento matemático en estudiantes de
básica superior. Universidad de Guayaquil.
https://repositorio.ug.edu.ec/handle/123456
789/47219
Ferreira, A., & Costa, L. (2024). Aplicativos
móviles STEM para aprendizaje científico
ambiental. Revista Brasileira de Ensino de
Ciência e Tecnologia, 17(3), 112–129.
https://doi.org/10.3895/rbect.v17n3.15833
García, M., & Ruiz, P. (2023). Visualización
dinámica y pensamiento lógico-matemático
en educación secundaria. Revista Educación
Matemática, 35(2), 55–73.
https://doi.org/10.24844/EM.v35i2.2675
Gurmu, Z. (2024). Effectiveness of GeoGebra
in teaching geometry: A quasi-experimental
study in Grade 10. Education and
Information Technologies, 29, 1123–1145.
https://doi.org/10.1007/s10639-023-11917-
7
Hillmayr, D., Ziernwald, L., Reinhold, F.,
Hofer, S., & Reiss, K. (2020). The potential
of digital tools to support mathematics
learning: A metaanalysis. Computers &
Education, 158, 103999.
https://doi.org/10.1016/j.compedu.2020.103
999
Hunegnaw, K., Getachew, T., & Mengistu, M.
(2025). Comparing virtual versus physical
experiments in chemistry. Heliyon, 11(3),
e24531.
https://doi.org/10.1016/j.heliyon.2025.e245
31
Kuo, Y., Lin, Y., & Hsia, C. (2025). AI-
enhanced adaptive learning for problem-
solving competence in mathematics.
Interactive Learning Environments, 33(4),
605–624.
https://doi.org/10.1080/10494820.2024.231
9875
León, R. (2023). Integración de TIC y
aprendizaje autónomo en Matemáticas.
Revista Educación y Tecnología, 33(2), 85-
98.
https://doi.org/10.14507/et.v33i2.2023
Lepore, R., De Pietro, G., & Gallo, L. (2024).
Fuzzy cognitive maps to model cognitive
processes in mathematics learning. Journal
of Intelligent & Fuzzy Systems, 46(3), 3349–
3360. https://doi.org/10.3233/JIFS-231230
Lo, C. K., Hew, K. F., & Chen, G. (2021).
Flipped mathematics classrooms: Meta-
analysis of impacts on achievement and
engagement. Educational Research Review,
32, 100372.
https://doi.org/10.1016/j.edurev.2021.10037
2
López, M. (2022). Tecnologías educativas para
el desarrollo del pensamiento lógico-
matemático. Revista Científica Educare,
26(3), 143-162.
https://doi.org/10.15359/ree.26-3.8
Maqbool, S., Rehman, F., & Khan, M. (2025).
ScienceAR: Augmented reality application
for biology education. Computers in Human
Behavior Reports, 9, 100401.
https://doi.org/10.1016/j.chbr.2024.100401