Página 300
un mayor número de pacientes en todo el
mundo.
Referencias Bibliográficas
Abraham, A., & Tisdale, F. (2021). Gene
therapy for sickle cell disease: moving from
the bench to the bedside. Blood, The Journal
of the American Society of Hematology,
138(11), 932-941.
https://doi.org/10.1182/blood.2019003776
Esrick, B., Achebe, M., Armant, M., Bartolucci,
P., Ciuculescu, F., Daley, H., & Williams,
A., (2019). Validation of BCL11A as
therapeutic target in sickle cell disease:
results from the adult cohort of a
pilot/feasibility gene therapy trial inducing
sustained expression of fetal hemoglobin
using post-transcriptional gene silencing.
Blood, 134, LBA-5.
https://doi.org/10.1182/blood-2019-132745
Frangoul, H., Altshuler, D., Cappellini, D.,
Chen, S., Domm, A., Eustace, K., & Sheth,
S. (2021). CRISPR-Cas9 gene editing for
sickle cell disease and β-thalassemia. New
England Journal of Medicine, 384(3), 252-
260.
https://doi.org/10.1056/NEJMoa2031054
Goyal, S., Tisdale, J., Schmidt, M., Kanter, J.,
Jaroscak, J., Whitney, D., & Bonner, M.
(2022). Acute myeloid leukemia case after
gene therapy for sickle cell disease. New
England Journal of Medicine, 386(2), 138-
147.
https://www.nejm.org/doi/full/10.1056/NEJ
Moa2109167
Haapaniemi, E., Botla, S., Persson, J.,
Schmierer, B., & Taipale, J., (2018).
CRISPR-Cas9 genome editing induces a
p53-mediated DNA damage response.
Nature Medicine, 24(7), 927-930.
https://doi.org/10.1038/s41591-018-0049-z
Hoban, D., Orkin, H., & Bauer, E. (2016).
Genetic treatment of a molecular disorder:
gene therapy approaches to sickle cell
disease. Blood, 127(7), 839-848.
https://doi.org/10.1182/blood-2015-09-
618587
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M.,
Doudna, A., & Charpentier, E., (2012). A
programmable dual-RNA-guided DNA
endonuclease in adaptive bacterial
immunity. Science, 337(6096), 816-821.
https://doi.org/10.1126/science.1225829
Kanter, J., Thompson, A., Pierciey, J., Hsieh,
M., Uchida, N., Leboulch, P., & Tisdale, F.,
(2023). Lovo‐cel gene therapy for sickle cell
disease: Treatment process evolution and
outcomes in the initial groups of the HGB‐
206 study. American journal of hematology,
98(1), 11-22.
https://doi.org/10.1002/ajh.26741
Kanter, J., Tisdale, F., Mapara, Y.,
Kwiatkowski, L., Krishnamurti, L., Schmidt,
M., & Walters, C., (2019). Resolution of
sickle cell disease manifestations in patients
treated with lentiglobin gene therapy:
updated results from the phase 1/2 Hgb-206
group C study. Blood, 134, 990.
https://doi.org/10.1182/blood-2019-128894
Kato, J., Piel, B., Reid, D., Gaston, H., Ohene,
K., Krishnamurti, L., & Steinberg, H.,
(2018). Sickle cell disease. Nature Reviews
Disease Primers, 4(1), 18010.
https://doi.org/10.1038/nrdp.2018.10
Kosicki, M., Tomberg, K., & Bradley, A.,
(2018). Repair of double-strand breaks
induced by CRISPR–Cas9 leads to large
deletions and complex rearrangements.
Nature Biotechnology, 36(8), 765-771.
https://doi.org/10.1038/nbt.4192
Leonard, A., & Tisdale, J., (2024). Advances in
gene therapy for sickle cell anemia. Nature
Reviews Genetics, 25(3), 150–162.
https://doi.org/10.3389/frhem.2024.146895
2
Leonard, A., & Tisdale, J. F. (2023). Gene
therapy for sickle cell disease. Hematology,
2023(1), 542-547.
https://doi.org/10.1182/hematology.202300
0487
Leonard, A., & Tisdale, F. (2024). A new
frontier: FDA approvals for gene therapy in
sickle cell disease. Molecular Therapy,
32(2), 264-267.
https://doi.org/10.1097/MS9.000000000000
2409