Página 115
Computers & Education: Artificial
Intelligence, 6, 100185.
García-Peñalvo, F., Corell, A., Abella, V., &
Grande, M. (2022). Learning analytics and
higher education: A systematic literature
review. Education in the Knowledge Society,
23, e28627.
https://doi.org/10.14201/eks.28627
Hattie, J., & Timperley, H. (2007). The power
of feedback. Review of Educational
Research, 77(1), 81–112.
https://doi.org/10.3102/003465430298487
Hernández-Sampieri, R., Fernández-Collado,
C., & Baptista-Lucio, P. (2018).
Metodología de la investigación (6.ª ed.).
McGraw-Hill.
Khalil, M., & Ebner, M. (2017). Learning
analytics: Principles and constraints. In
Proceedings of the World Conference on
Educational Multimedia, Hypermedia and
Telecommunications (pp. 59–68).
Kim, J., Park, Y., & Cozart, J. (2018). Adaptive
learning systems and educational data
mining. Educational Technology & Society,
21(4), 30–45.
Kivunja, C. (2023). Constructivism in the
digital age: Implications for teaching and
learning. International Journal of Higher
Education, 12(2), 45–56.
Liu, R., Liu, Q., & Liu, B. (2021). Artificial
intelligence and predictive analytics in
education: A systematic review. IEEE
Access, 9, 78912–78928.
Mayer, R. (2009). Multimedia learning (2nd
ed.). Cambridge University Press.
Mazhar, U. (2025). Innovation diffusion and AI
adoption in higher education institutions.
Technology in Society, 72, 102193.
Méndez, L. (2022). Data-informed pedagogy: A
framework for adaptive teaching. Revista
Latinoamericana de Innovación Educativa,
14(2), 88–101.
Nicol, D., & Macfarlane-Dick, D. (2006).
Formative assessment and self-regulated
learning. Studies in Higher Education, 31(2),
199–218.
Ortega, P. (2023). Educación y equidad social
en entornos digitales. Revista Educación y
Sociedad, 41(3), 112–128.
Ortega, J., Ramírez, L., & Torres, M. (2022).
Digital transformation and learning analytics
in Latin American universities. Education
and Information Technologies, 27(4), 5673–
5692.
Panadero, E. (2022). A review of self-regulated
learning: Six models and four directions for
research. Frontiers in Psychology, 13, 422.
Pardo, A., Han, F., & Ellis, R. (2019).
Combining university student self-regulated
learning indicators and engagement with
online learning events. IEEE Transactions
on Learning Technologies, 12(2), 219–232.
Reigeluth, C., & Beatty, B. (2022).
Instructional-design theories and models:
The learner-centered paradigm of education.
Routledge.
Reyes-Parra, L., Castillo, D., & Pérez, M.
(2024). Personalized learning supported by
educational technology: A Latin American
perspective. Revista Electrónica de
Investigación Educativa, 26, e09.
Rivas, G. (2023). Pertinencia de la
investigación educativa en contextos
digitales. Revista Andina de Educación, 7(1),
33–47.
Rivera-Arzola, J. (2021). Personalized learning
and student performance: Evidence from
higher education. Journal of Educational
Technology Research, 19(3), 201–215.
Rogers, E. (2003). Diffusion of innovations (5th
ed.). Free Press.
Romero, C., & Ventura, S. (2020). Educational
data mining and learning analytics: An
updated survey. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge
Discovery, 10(3), e1355.
Sajja, P., Parmar, J., & Patel, K. (2023).
Integrating AI and learning analytics for
data-driven pedagogical decisions and
personalized interventions in education.
Education and Information Technologies,
28, 12345–12368.
Shute, V. (2008). Focus on formative feedback.
Review of Educational Research, 78(1),
153–189.
Siemens, G., & Baker, R. (2012). Learning
analytics and educational data mining. In
Proceedings of the 2nd International