
Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 6 No. 10.2
Edición Especial IV 2025
Página 952
Mendoza, A., Zapata, E., & Vázquez, V.
(2023). Co-creation of digital technologies
with cocoa-producing communities in
Tabasco, Mexico: Gender dimensions and
adoption patterns. Journal of Rural Studies,
95, 343–356.
Molina, J., Osorio, G., & Gómez, C. (2023).
Early detection of witches’ broom disease in
cocoa using multispectral imaging and deep
learning. Plant Methods, 19, 87.
Ndoungué, M., Petchayo, S., Tchoutat, C., &
ten Hoopen, G. (2023). The black pod
disease complex in cacao: Current
understanding of causal agents,
epidemiology and management in Africa.
Plant Pathology, 72(1), 54–68.
Oliveira, R., Alvim, R., & Freire, E. (2023).
Barriers for integration of digital
technologies in cocoa value chains:
Perspectives from Brazilian stakeholders.
Journal of Agricultural and Food Industrial
Organization, 21(2), 135–149.
Orozco, S., Ceballos, D., & Tabares, R. (2023).
Faster R-CNN for black pod disease
detection and localization in cocoa
plantations. Frontiers in Plant Science, 14,
1138992.
Ramírez, A., Navarro, R., & González, B.
(2023). Early detection of moniliasis
(Moniliophthora roreri) in cocoa using deep
learning with smartphone imagery. Crop
Protection, 169, 106211.
Rodríguez, D., Martínez, J., & González, O.
(2023). Semantic segmentation with U-Net
architecture for quantification of
Phytophthora lesions in cocoa pods. Plant
Disease, 107(10), 2897–2908.
Rodríguez, S., Armijos, L., & Carvajal, J.
(2023). Recent advances in artificial
intelligence applications for disease
detection in tropical cash crops: Challenges
and opportunities. Frontiers in Plant
Science, 14, 1166023.
Rosales, M., Mora, A., & Gómez, F. (2024).
Mobile applications for agricultural
extension in Latin America: Adoption
patterns and barriers among smallholder
cocoa farmers. Information Technology for
Development, 30(1), 119–137.
Ruiz, E., Chávez, J., & Torres, C. (2023).
Integrated early warning system for
management of moniliasis in cocoa:
Combining AI-powered detection with
agroclimatic predictive models. Agricultural
Systems, 204, 103583.
Santana, P., Rodríguez, G., & Guerrero, J.
(2024). Design and implementation of a
mobile application for cocoa disease
identification: A user-centered approach in
rural Ecuador. International Journal of
Human-Computer Interaction, 40(4), 1243–
1261.
Vallejos, G., Arévalo, L., & Cayotopa, J.
(2023). Impact of training dataset
composition on robustness of deep learning
models for cocoa disease detection across
different agroecological zones. Computers
and Electronics in Agriculture, 204, 107488.
Vargas, S., Brito, M., & Serrano, L. (2024).
Data augmentation techniques to improve
early detection of moniliasis in cocoa: A
comparative analysis. Scientific Reports, 14,
3752.
Villamizar, R., Osma, J., & Martínez, A.
(2024). Recent advances in moniliasis
detection and management in Colombia:
Integrating molecular diagnostics with field-
applicable technologies. Tropical Plant
Pathology, 49, 217–231.
Wani, I., Kumar, V., Majeed, D., & Dar, B.
(2024). Cocoa diseases: Current status,
emerging threats, and innovative
management approaches for sustainable
production. Critical Reviews in Food
Science and Nutrition, 64(3), 412–432.