
Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 6 No. 10.2
Edición Especial IV 2025
Página 446
L28. https://doi.org/10.1088/0143-
0807/30/2/L03
Bender, C. M., & Orszag, S. A. (1999).
Advanced mathematical methods for
scientists and engineers I: Asymptotic
methods and perturbation theory. Springer.
https://link.springer.com/book/10.1007/978-
1-4757-3069-2
BigAlabo, A. (2023). Fifth-order AGM formula
for the period of a large-angle pendulum.
Revista Brasileira de Ensino de Física, 45,
e20230014. https://doi.org/10.1590/1806-
9126-RBEF-2023-0014
Black, B., & Vel, V. (2023). An analysis of the
large-amplitude simple pendulum using
Fourier series. American Journal of Physics,
91(10), 776–782.
https://doi.org/10.1119/5.0130943
Boulanger, N., & Buisseret, F. (2020). The
formulations of classical mechanics with
Foucault’s pendulum. Physics, 2(4), 531–
540.
https://doi.org/10.3390/physics2040030
Carroll, R., & Lincoln, J. (2020). Phyphox app
in the physics classroom. The Physics
Teacher, 58(8), 606–607.
https://doi.org/10.1119/10.0002393
Coramik, M., & İnanç, B. (2023). A physical
pendulum experiment with LEGO, phyphox
and Tracker. Physics Education, 58(5),
055014. https://doi.org/10.1088/1361-
6552/ace57d
Cumber, P. (2023). There is more than one way
to force a pendulum. International Journal
of Mathematical Education in Science and
Technology, 54(4), 579–613.
https://doi.org/10.1080/0020739X.2022.203
9971
Erol, M., & Oğur, M. (2023). Teaching
large-angle pendulum via Arduino-based
STEM education material. Physics
Education, 58(4), 045001.
https://doi.org/10.1088/1361-6552/accef4
Hart, M., & Kuzyk, M. G. (2020). Collecting
data with a mobile phone: Studies of
mechanical laws such as energy and
momentum conservation. American Journal
of Physics, 88(11), 948–957.
https://doi.org/10.1119/10.0001686
Hernandez, R., Garcia-Hernandez, R., &
Jurado, F. (2024). Modeling, simulation, and
control of a rotary inverted pendulum: A
reinforcement learning-based control
approach. Modelling, 5(4), 1824–1852.
https://doi.org/10.3390/modelling5040095
Hinrichsen, P. F. (2021). Review of
approximate equations for the pendulum
period. European Journal of Physics, 42(1),
015005. https://doi.org/10.1088/1361-
6404/abad10
Kaps, A., Splith, T., & Stallmach, F. (2021).
Implementation of smartphone-based
experimental exercises for physics courses at
universities. Physics Education, 56(3),
035004.
https://doi.org/10.1088/1361-
6552/abdee2
Li, D., Liu, L., & Zhou, S. (2020). Exploration
of large pendulum oscillations and damping
using a smartphone. The Physics Teacher,
58(9), 634–636.
https://doi.org/10.1119/10.0002729
Liu, X., Chen, X., Li, Z., & Huang, F. (2024).
Balance controller design for inverted
pendulum based on deep reinforcement
learning. Symmetry, 16(9), 1227.
https://doi.org/10.3390/sym16091227
Lubarda, M. V., & Lubarda, V. A. (2021). An
analysis of pendulum motion in the presence
of quadratic and linear drag. European
Journal of Physics, 42(5), 055014.
https://doi.org/10.1088/1361-6404/ac1446
Lukovic, M., Hoffmann, A., & Nussbaum, A.
(2021). Inexpensive physical pendulum with
Arduino. The Physics Teacher, 59(6), 432–
436. https://doi.org/10.1119/10.0006155
Mathevet, R., Lamrani, N., Martin, L., Ferrand,
P., Castro, J.-P., Marchou, P., & Fabre, C. M.
(2022). Quantitative analysis of a
smartphone pendulum beyond linear
approximation: A lockdown practical
homework. American Journal of Physics,
90(5), 344–351.
https://doi.org/10.1119/10.0010073
Monteiro, M., & Martí, A. C. (2022). Resource
Letter MDS-1: Mobile devices and sensors
for physics teaching. American Journal of
Physics, 90(5), 328–343.
https://doi.org/10.1119/5.0073317