Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 6 No. 6.1
Edición Especial II 2025
Página 821
INTERNAL ROOT MORPHOLOGY OF PREMOLARS ACCORDING TO
RADIOGRAPHIC IMAGING
MORFOLOGÍA DE LA RAÍZ INTERNA DE LOS PREMOLARES SEGÚN IMÁGENES
RADIOGRÁFICAS
Autores: ¹Leonela Karelys Zambrano Balcázar, ²Roberto Johnny Romero Chévez,
3
Dick Bryan
Vera Morán,
4
Bernarda Andrea Sánchez Arteaga,
5
Kevin Roberto Romero Díaz.
1
ORCID ID: https://orcid.org/0009-0001-7978-317X
2
ORCID ID: https://orcid.org/0009-0009-1985-5985
3
ORCID ID: https://orcid.org/0000-0003-2460-2527
4
ORCID ID: https://orcid.org/0000-0002-1347-1798
5
ORCID ID: https://orcid.org/0009-0009-3854-1703
1
E-mail de contacto: leonela.zambranob@ug.edu.ec
2
E-mail de contacto: roberto.romeroch@ug.edu.ec
3
E-mail de contacto: dick.veram@ug.edu.ec
4
E-mail de contacto: bernarda.sancheza@ug.edu.ec
5
E-mail de contacto: kevin.romerod@ug.edu.ec
Afiliación:
1*2*3*4*5*
Universidad de Guayaquil, (Ecuador).
Artículo recibido: 2 de Agosto del 2025
Artículo revisado: 4 de Agosto del 2025
Artículo aprobado: 8 de Agosto del 2025
1
Odontóloga graduada de la Universidad de Guayaquil, (Ecuador).
2
Doctor en Odontología graduado de la Universidad de Guayaquil, (Ecuador). Especialista en Endodoncia graduado de la Universidad de
Guayaquil, (Ecuador). Diplomado en Docencia Superior graduado de la Universidad de Guayaquil, (Ecuador). Magíster en Investigación
Clínica y Epidemiológica graduado de la Universidad de Guayaquil, (Ecuador).
3
Odontólogo graduado de la Universidad de Guayaquil, (Ecuador). Cirujano Dentista Especialista en Rehabilitación Oral con mención en
Prótesis graduado de la Universidad de Concepción, (Chile).
4
Odontóloga graduada de la Universidad de Guayaquil, (Ecuador). Especialista en Endodoncia graduada en la Universidad San Francisco
de Quito, (Ecuador).
5
Odontólogo graduado de la Universidad de Guayaquil, (Ecuador). Especialista en Radiología Bucal y Maxilofacial graduado en la
Universidad Peruana Cayetano Heredia, (Ecuador).
.
Resumen
El presente estudio aborda el tema de la
morfología interna de los conductos radiculares
y el uso de radiografías para su diagnóstico. El
objetivo se centra en establecer la morfología
de los conductos radiculares en premolares a
través de imágenes radiográficas. La
metodología impli una investigación
descriptiva, observacional y transversal con un
enfoque cualitativo, utilizando una muestra de
40 piezas dentales extraídas (tanto premolares
superiores como inferiores). Las técnicas e
instrumentos utilizados incluyeron formularios
de observación basados en el análisis de
radiografías, fotografías y un procesador de
placas de fósforo. Se tomaron radiografías
periapicales para observar el sistema de
conductos radiculares y se utilizó un
procesador de placas de fósforo para obtener
imágenes más nítidas. Se identificaron
conductos accesorios o colaterales dentro de la
morfología Tipo I, representando el 7,5% del
total, así como deltas apicales, también con una
incidencia del 7,5%. Cabe destacar que el 85%
de los especímenes no mostraron variaciones
morfológicas. El estudio concluyó que la
anatomía de los sistemas de conductos
radiculares de los premolares es variable, lo
que enfatiza la importancia de comprender
estas variaciones para el éxito del tratamiento
endodóntico. Se observó que el 45 % de los
premolares estudiados presentaban una raíz,
mientras que el 55 % presentaban dos raíces.
La mayoría de los premolares presentaban uno
o dos conductos radiculares, con diferentes
configuraciones según la clasificación de
Vertucci.
Palabras clave: Morfología radicular
interna, Premolares, Radiografía,
Clasificación de Vertucci.
Abstract
The present study addresses the topic of the
internal morphology of root canals and the use
Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 6 No. 6.1
Edición Especial II 2025
Página 822
of radiographs for their diagnosis. The
objective focuses on establishing the
morphology of root canals in premolars
through radiographic imaging. The
methodology involved a descriptive,
observational, and cross-sectional research
with a qualitative approach, using a sample of
40 extracted dental pieces (both upper and
lower premolars). Techniques and instruments
utilized included observation forms based on
the analysis of radiographs, photographs, and a
phosphor plate processor. Periapical
radiographs were taken to observe the root
canal system, and a phosphor plate processor
was used to obtain sharper images. Accessory
or collateral canals were identified within Type
I morphology, representing 7.5% of the total,
as well as apical deltas, also with an incidence
of 7.5%. It is noteworthy that 85% of the
specimens showed no morphological
variations. The study concluded that the
anatomy of premolar root canal systems is
variable, emphasizing the importance of
understanding these variations for the success
of endodontic treatment. It was observed that
45% of the studied premolars had one root,
while 55% had two roots. Most premolars had
one or two root canals, with different
configurations according to Vertucci's
classification.
Keywords: Internal root morphology,
Premolars, Radiography, Vertucci
classification.
Sumário
O presente estudo aborda o tema da morfologia
interna dos canais radiculares e o uso de
radiografias para seu diagnóstico. O objetivo é
estabelecer a morfologia dos canais radiculares
em pré-molares por meio de imagens
radiográficas. A metodologia envolveu uma
pesquisa descritiva, observacional e transversal
com abordagem qualitativa, utilizando uma
amostra de 40 peças dentárias extraídas (pré-
molares superiores e inferiores). As técnicas e
instrumentos utilizados incluíram formulários
de observação baseados na análise de
radiografias, fotografias e um processador de
placa de fósforo. Radiografias periapicais
foram realizadas para observar o sistema de
canais radiculares, e um processador de placa
de fósforo foi utilizado para obter imagens mais
nítidas. Canais acessórios ou colaterais foram
identificados dentro da morfologia Tipo I,
representando 7,5% do total, assim como deltas
apicais, também com incidência de 7,5%. Vale
ressaltar que 85% dos espécimes não
apresentaram variações morfológicas. O estudo
concluiu que a anatomia dos sistemas de canais
radiculares de pré-molares é variável,
enfatizando a importância da compreensão
dessas variações para o sucesso do tratamento
endodôntico. Observou-se que 45% dos pré-
molares estudados apresentavam uma raiz,
enquanto 55% apresentavam duas raízes. A
maioria dos pré-molares apresentava um ou
dois canais radiculares, com diferentes
configurações de acordo com a classificação de
Vertucci.
Palavras-chave: Morfologia radicular
interna, Pré-molares, Radiografia,
Classificação de Vertucci.
Introducción
This study addresses the topic of the internal
morphology of root canals and the use of
radiographs for diagnosis. Internal root canal
morphology refers to the shape and internal
structure of the root canals located within the
tooth roots. Premolars are a type of tooth with a
single root and generally two or three root
canals. Radiographic imaging is a technique
used in dentistry to obtain images of teeth and
surrounding structures, which can include
methods such as computed tomography, digital
radiography, phosphor plate processing, and
clearing techniques. The root canal system in
premolars presents a complex morphology,
which can pose a challenge for dental
professionals when attempting to differentiate
and properly treat these canals. Vertucci
classified root canals into eight types, leading to
various other classifications proposed by
different authors to describe the variations in
root canal morphology. Studies conducted in
countries such as Chile, Peru, Mexico, and
Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 6 No. 6.1
Edición Especial II 2025
Página 823
Argentina have investigated the number of roots
and the configuration of root canals in
premolars within their populations, using
radiographic methods like computed
tomography, digital radiography, phosphor
plate processing, and clearing techniques. These
investigations have highlighted the complexity
and variability of root canal morphology in
premolars, noting the influence of ethnic factors
on these differences.
Various studies have described anthropological
variations in the anatomy of the root canal
system, which has led to discrepancies in the
literature regarding the morphology of
permanent teeth canals. These differences
contribute to potential errors by professionals,
who may face difficulties in identifying the
characteristics of the canals. Such
morphological variations may be due to
significant ethnic differences and the inherent
challenges in studying the complex root canal
system (Greco et al., 2009). The distinction
between internal and external root canal
morphology has been a challenge in dentistry
until Vertucci classified the system into eight
types. Subsequently, various other
classifications have been proposed due to the
high variability of the canals (Retamoso, 2021).
The literature indicates that upper premolars
show highly variable root canal morphology
(Soares & Goldberg, 2002, cited in Oporto et
al., 2010). Conversely, studies in Chile have
revealed that the anatomy of maxillary
premolars is relatively straightforward
compared to other ethnic groups (Monardes et
al., 2021).
A study conducted in Argentina on lower
premolars states that even when they have a
single root canal, these teeth can exhibit
complex anatomy. It is highlighted that a single
canal can show various cross-sectional
morphologies, ranging from circular to pinched
shapes (Berchialla et al., 2022). Recently, in a
South African subpopulation, 13 different
configurations for maxillary premolars were
identified, while in an Egyptian subpopulation,
11 different canal configurations were observed
(Buchanan et al., 2020). The complex anatomy
of mandibular premolar root canals may not be
detectable in routine radiographs. Periapical
radiographs represent three-dimensional
anatomy in a two-dimensional image, which
can result in missing important features of the
tooth and surrounding tissues, especially in the
mesiodistal plane. Therefore, features present in
the vestibulolingual dimension may go
unnoticed (Bolaños & Macías, 2018). In a
theoretical context, the internal root
morphology of premolars is characterized by its
anatomical variability, including fused roots,
accessory roots, single or multiple root canals,
among other features. Radiographic imaging
has been an essential tool in the diagnosis and
planning of endodontic treatments; however, its
accuracy may be influenced by factors such as
the radiographic technique used, the position of
the tooth within the oral cavity, and the quality
of the radiographic equipment. Therefore,
understanding these factors that affect the
visualization of the internal root morphology of
premolars has been crucial for accurate
diagnosis and successful endodontic treatment.
Finally, the use of techniques and
methodological tools in research on the internal
root morphology of premolars, based on
radiographic imaging, has provided substantial
benefits to students, professionals, and patients
in dentistry. From an educational perspective, it
has enabled advanced learning, the
development of research skills, and practical
application of knowledge. For professionals, it
has improved clinical practice, ongoing
professional development, and the quality of
Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 6 No. 6.1
Edición Especial II 2025
Página 824
patient care. Regarding patients, it has resulted
in more accurate diagnoses, reduced
complications, and improved outcomes of
endodontic treatments, thereby benefiting oral
health and patients' quality of life.
Consequently, the purpose of this research was
to determine the morphology of the root canals
in premolars using radiographic imaging.
Additionally, the study analyzed classifications
of the root canal system, quantified the number
of roots and root canals found in premolars,
classified the types of root canals according to
Vertucci's classification, and finally identified
the presence of morphological variations in the
premolars analyzed radiographically. The
research question addressed was: What is the
internal root morphology of premolars as
analyzed radiographically?
The study conducted by Barrón & Sánchez
(2019) analyzed variations in the morphology
of canal systems in the first and second
mandibular premolars of patients who visited
the imaging department of the Universidad
Autónoma de Nayarit. It was observed that the
most common canal system was Type I in both
types of premolars, although other anatomical
variations were also identified. It was concluded
that most mandibular premolars had a single
canal, with a higher frequency of anatomical
variables Type III and V. These variations in the
internal anatomy of mandibular premolars are
important for clinical professionals. From a
practical perspective, the internal root
morphology of premolars has been extensively
studied in dentistry due to its relevance in
endodontic procedures. The variability in root
anatomy can significantly influence treatment
success, making it essential for dentists to
thoroughly understand it. Consequently,
investigating how radiographic imaging affects
the visualization and understanding of premolar
root morphology provides valuable information
to improve clinical practice and reduce potential
complications during endodontic treatments.
In the study by Carosi et al. (2022), the root
canal morphology of maxillary first premolars
was examined using cone-beam computed
tomography (CBCT) in a sample of 50
Argentine patients. It was found that the most
common internal morphology type for
maxillary first premolars was Type IV
according to Vertucci’s classification.
Significant agreement was observed between
the right and left sides regarding the types of
morphology, as well as in the number of roots.
These findings are relevant for appropriate
endodontic treatment. Ontaneda (2019),
evaluating the canal system in macerated roots
from 50 teeth, found that 60% of the teeth had a
single canal, 36% exhibited two canals, and 2%
showed two fused roots in the apical third with
a specific canal configuration. Maceration
proved to be an effective procedure for
identifying the anatomy of the root canal system
and its variations (Ontaneda, 2019). The study
by Castillo et al. (2023) focused on the root
canal system of second maxillary and
mandibular premolars using the technique of
dental maceration, in a sample of 100 second
premolars from an Ecuadorian population. It
was found that Vertucci’s Type I classification
was the most predominant in both upper and
lower premolars, followed by less common
classifications. Maceration allowed for three-
dimensional observation of the internal tooth
anatomy, greatly aiding in understanding its
morphology.
Moreno et al. (2021) mention that mandibular
premolars can present complex anatomy, with
variations ranging from Type I to Type V
according to Vertucci’s classification.
Furthermore, these teeth may have C-shaped
canals, which pose an additional challenge for
Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 6 No. 6.1
Edición Especial II 2025
Página 825
proper endodontic treatment. Root canal
anatomy can vary depending on factors such as
ethnicity, gender, and age. The pulp chamber is
the space inside the tooth that contains the
dental pulp and is mainly coated with dentin,
except near the apex. It divides into two parts:
the pulp chamber and the root canal. The pulp
chamber is the crown portion of the pulp cavity,
located centrally within the crown and
conforms to its exterior shape. It is generally of
considerable size and houses the coronal pulp
(Soares et al., 2002). In terms of shape, the pulp
chamber can be described as cubic, with six
surfaces called mesial, distal, vestibular,
palatolingual, roof, and floor. These surfaces
are not flat but tend to be convex or concave,
following the structure of the corresponding
outer walls. The volume of the pulp chamber
constantly changes due to variations in wall
shape, influenced by ongoing physiological
changes in the dentin (Brau, 2014). The pulp
chamber is composed of the roof, the floor (or
cervical wall), and the surrounding lateral walls.
The roof is the occlusal or incisal part of the
pulp cavity, shaped concavely toward the
occlusal surface or incisal edge, with diverticula
that extend toward the tips of the cusps where
the pulp horns are located. The floor or cervical
wall is the opposite surface to the roof, convex
in shape, and contains the openings of the root
canals. The lateral walls are named according to
their orientation: vestibular, lingual or palatal,
mesial, or distal (Soares et al., 2002).
A root canal is defined as the connection
between the pulp chamber and the
periodontium, extending along the mid-zone of
the root. Regarding dental root morphology,
three main forms can be identified. Simple roots
correspond to single-rooted or multi-rooted
teeth with clearly differentiated roots (Brau,
2014). Bifurcated roots, also known as divided
roots, originate from well-differentiated roots
and can be wholly or partially split. Fused roots
result from the union of two or more roots that
merge into a single dental structure (Brau,
2014). Concerning the size of root canals, two
main aspects must be considered. First, the
longitudinal caliber varies along the length of
the canal, being widest at the pulp floor and
narrowing progressively toward the apex. This
diameter can show variations such as
convergent walls toward the apex, parallel
walls, or divergent walls (Brau, 2014). In young
teeth whose roots have not yet fully developed,
the root canal may be extremely wide, with an
apical diameter larger than the cervical diameter
due to incomplete root formation. Regarding the
shape of the canal in cross-section, it can be
circular, elliptical, or C-shaped, depending on
the root morphology and the configuration of
the root canal (Brau, 2014). The root canal
generally follows the central axis of the root and
can be straight, curved, or kinked. Curved
canals may present varying degrees of
curvature, such as partial bends, full curvatures,
kinks, or dilacerations, which can influence
endodontic procedures (Brau, 2014). According
to a study cited by Brau (2014), approximately
84% of root canals exhibit curvatures.
Regarding the first maxillary premolar, it is
notable that this tooth typically has two roots,
one vestibular and one palatal, according to
multiple authors, which is a characteristic
feature of its anatomy (Checya & Andrade,
2022). Concerning the pulp chamber, it is
described as being wider in the vestibulolingual
direction than in the mesiodistal direction, with
vestibular and palatal pulp horns present, the
vestibular horn generally being larger.
Additionally, most cases show that this
premolar has two roots, with single-root cases
being significantly less common (Soares et al.,
2002). As for the root canal in the first maxillary
premolar, it may have one, two, or even three
Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 6 No. 6.1
Edición Especial II 2025
Página 826
canals. In most cases, two canals are observed,
which tend to be narrow and straight, even when
the tooth has only one root. The presence of
three canalstwo vestibular and one palatal
is less common and may pose challenges during
endodontic treatment due to their narrowness
and difficult access (Soares et al., 2002).
Conversely, the second maxillary premolar
typically presents with a single root in about
95% of cases. Its root is usually longer than that
of the first premolar and flattened mesiodistally
with a distal inclination, as noted by Checya &
Andrade (2022). The pulp chamber is similar to
that of the first premolar but larger, with two
projections housing the pulp horns, which are
usually nearly equal in size (Moenne, 2013).
The root canal of the second maxillary premolar
often contains a single canal, which tends to be
oval in shape in a cross-sectioncompressed
mesiodistally and broader vestibulopalatally.
Sometimes, two canals are present, with various
configurations that may converge into a single
apical foramen or remain separate with
independent foramina (Soares et al., 2002).
The mandibular first premolar is characterized
by an oval-shaped root in cross-section, with a
small lingual conicity, according to Moenne
(2013). Its pulp chamber has two pulp horns: a
pointed large vestibular horn and a smaller
rounded lingual horn. The chamber is inclined
lingually and conical from cervical to apical,
with a uniformly conical outline up to its sharp
apex, positioned with a lingual tilt. The
anatomical variability of the root canals in
mandibular first premolars is broad, with one,
two, three, four, or even five canals reported,
including C-shaped canals, according to
Cardona & Fernández (2015) and other authors
(Burns & Herbranson, 2002; Játiva et al., 2022).
Particularly, the presence of multiple canals in
mandibular first premolars varies significantly,
with percentages ranging from 11.5% to 36%,
depending on Cohen & Burns and Vertucci.
These anatomical variations are attributed to
genetic, racial, and gender factors that influence
the root morphology of this tooth (Játiva et al.,
2022). The second mandibular premolar
typically has an oval-shaped root with an apical
conicity and a lingual and apical inclination, as
reported by Moenne (2013). Its pulp chamber is
broader vestibulolingually than mesiodistally
compared to the first premolar, with a roof
showing two concavities corresponding to the
cusps, more pronounced in the vestibular cusp,
especially in young individuals (Cardona &
Fernández, 2015).
Regarding the root canal of the second
mandibular premolar, it is commonly a single
canal, larger and less constricted mesiodistally
than the first premolar, with an oval shape in the
cervical and middle thirds, becoming circular in
the apical third, as mentioned by Quispe &
Valero (2021). The separation between the pulp
chamber and the root canal is also a
characteristic frequently observed (Vertucci &
Haddix, 2011). Histologically, it is common to
find ramifications within the root canal that
serve as communication pathways between the
dental pulp and the periodontal ligament. These
ramifications can occur anywhere along the root
and are known by different names based on
their location (Maynard et al., 2023, p. 48).
Vertucci proposed a classification of eight
configurations for the root canal system. Type I
is characterized by a single canal that extends
from the pulp chamber to the apex (Maynard et
al., 2023, p. 48). In Type II, two separate canals
originate from the chamber and fuse near the
apex to form one canal. Type III involves a
canal that splits in the middle third and then
joins again, ending as a single canal at the apex.
Type IV consists of two separate canals from
the chamber that remain distinct throughout
their course until the apex. Type V begins as a
Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 6 No. 6.1
Edición Especial II 2025
Página 827
single canal in the chamber, divides into two,
and terminates as two separate canals at the
apex. Type VI features two canals that fuse in
the middle third, then split again, ending in two
separate foramina at the apex. Type VII
involves a canal that divides in the middle,
briefly fuses, and then divides again near the
apex, resulting in two individual canals. Lastly,
Type VIII is characterized by three separate
canals from the chamber to the root apex
(Maynard et al., 2023, p. 48).
Diaphanization is a process involving
decalcification, dehydration, fixation, and
staining of the root canals to facilitate their
examination. Various clarifying techniques
have been described in the literature, offering
the advantage of providing a three-dimensional
view of the root canal system (Arango et al.,
2023). Cone-beam computed tomography
(CBCT) is employed in dentistry as a
complementary diagnostic tool that enables
three-dimensional visualization of dental
structures, including root canal configurations
and their variations. Although it offers the
advantage of a lower radiation dose, its
limitation in slice thickness can make it difficult
to identify more complex root canal
arrangements. Additionally, CBCT may face
limitations regarding access, cost, and
calibration for the radiographic examination of
individual teethimportant considerations in
endodontic procedures (Rincón et al., 2022).
Currently, dental clinics are equipped with
digital radiography systems, such as digital
radiovisiography and phosphor plate imaging.
These tools are useful throughout all stages of
endodontic treatment, as each step requires
radiographic verification. While they provide
two-dimensional images that allow
visualization of the tooth, surrounding tissues,
and structures, digital radiographs also have
disadvantages, such as superimposition of
anatomical structures, which can hinder the
identification of root canal morphology, among
other issues (Rincón et al., 2022). The phosphor
plate processor is a wireless system that uses
reusable plates coated with phosphor material
for intraoral radiography. These thin, flexible,
and wireless plates can be reused multiple
times. The process involves exposing the plate
to X-ray radiation, capturing the image on the
phosphor coating, scanning the plate with a
high-speed reader, and producing an image that
is displayed on a monitor (Tomas et al., 2022;
Yesim & Seher, 2019).
Materials and Methods
This study was of a descriptive, observational,
cross-sectional, and qualitative nature. An
analytical-synthetic method was employed,
where radiographic examination was used to
observe the premolar samples to identify their
internal anatomy, including the number of
canals, the number of roots, and the
classification of the types of canals found. The
research was descriptive because it detailed the
root morphology observed in the
radiographically analyzed premolars, focusing
on the type of canal present and its variations.
The sample consisted of 40 extracted teeth (both
upper and lower premolars). Inclusion criteria
selected premolars with complete root
formation and no previous root canal treatment.
Teeth with root resorption, root caries, or
calcified canals were excluded. The techniques
and instruments used for data collection
included visual observation to differentiate and
classify the root canal system, as well as to
count the roots and canals of each sample. An
observation form based on radiograph analysis,
photographs, and a phosphor plate processor
was utilized. Periapical radiographs were taken
to evaluate the root canal system, and a
phosphor plate processor was used to obtain
clearer images. A review of bibliographic
Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 6 No. 6.1
Edición Especial II 2025
Página 828
sources was conducted to establish the
theoretical framework, gathering information
on the morphology of the root canal system of
premolars. Extracted premolars, both upper and
lower, were collected according to the
established criteria. Radiographs of each
sample were taken from two orientations and
processed with the phosphor plate processor.
The samples were visualized using the software
of the phosphor plate processor, and the
configuration of the root canals was recorded on
the data collection sheet. The results were
organized into a table for subsequent analysis
and synthesis to determine the presence and
types of root canal configurations within the
Ecuadorian population.
Results and Discusión
Figure 1. Premolars Used as Study Sample
Tabla 1. Number of roots in the observed
premolars
Number of
Roots
Frequency
Percentage
One root
18
45.00%
Two roots
22
55.00%
Total
40
100.00%
Source: own elaboration
In the descriptive-observational study of 40
premolars, Table 1 presents the distribution of
the number of roots. The findings reveal that
45% (18 premolars) have a single root, while
55% (22 premolars) possess two roots.
Tabla 2. Number of root canals in premolars
observed radiographically
Number of
Root Canals
Frequency
Percentage
One canal
30
75.00%
Two canals
10
25.00%
Total
40
100.00%
Fuente: elaboración propia
In the descriptive-observational study of 40
premolars, Table 2 shows the distribution of the
number of root canals. The results indicate that
75% (30 premolars) have a single canal, while
only 25% (10 premolars) have two canals.
Table 3. Distribution of premolars according to
Vertucci's classification
Frequency
Percentage
22
55.00%
2
5.00%
5
12.50%
10
25.00%
1
2.50%
40
100.00%
Source: own elaboration
As shown in Table 3, of the 40 premolars
examined, 22 exhibited a single canal,
accounting for 55% of the sample. Additionally,
2 premolars had a Type II canal, which
represents 5%; 5 premolars displayed a Type III
canal, equivalent to 12.5%; 10 premolars
showed a Type V canal, corresponding to 25%;
and one premolar exhibited a Type VII canal,
making up 2.5%.
Table 4. Presence of collateral or secondary
canals and apical deltas in relation to
Vertucci's classification
Vertucci
Classification
Collateral or
Secondary
Canals
Apical Detas
Apical Deltas
Type I
3
7.5%
3
7.5%
16
40%
Type II
0
0%
0
0%
2
5%
Type III
0
0%
0
0%
5
12.5%
Type V
0
0%
0
0%
10
25%
Type VII
0
0%
0
0%
1
2.5%
Total
3
7.5%
3
7.5%
34
85%
Fuente: elaboración propia
Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 6 No. 6.1
Edición Especial II 2025
Página 829
As shown in Table 4, of the 40 specimens
examined, collateral or accessory canals were
identified in Type I, representing 7.5% of the
total, as well as apical deltas, also with an
incidence of 7.5%. It is important to highlight
that 85% of the samples showed no
morphological variations. Moreno et al. (2021)
mention that the anatomy of premolars can be
complex, and this complexity may vary
depending on factors such as ethnicity, gender,
and age, following Vertucci's classification
ranging from type I to VIII. Various methods
are available to visualize the anatomy of root
canals, including diaphanization, computed
tomography, digital radiography, and digitized
images. In this particular study, periapical
radiographs were taken from two different
angles (buccolingual and mesiodistal) using a
phosphor plate processor. The results indicate
that, out of the 40 premolars studied, 75% had a
single canal and 25% had two canals, classified
according to Vertucci’s system. These findings
are consistent with previous research, such as
Ontaneda’s (2019) study, which also found a
similar distribution of canals in premolars.
Vertucci’s type I classification was the most
common in this study, accounting for 55% of
the samples. This finding aligns with
observations by Barrón & Sánchez (2019) and
Castillo et al. (2023) in similar populations.
However, it differs from Carosi et al.’s (2022)
findings in an Argentine population, where type
IV was the most prevalent. Overall, the results
of this study agree with existing literature
regarding the root canal morphology of
premolars, though some discrepancies can be
attributed to differences in studied populations
and imaging techniques used.
Conclusions
It was concluded that the anatomy of the root
canal system in premolars is variable, and
understanding these variations is crucial for the
success of endodontic treatment. It was
observed that 45% of the studied premolars had
one root, while 55% had two roots. Most
premolars had one or two root canals, with
different configurations according to Vertucci’s
classification. Additionally, variations in
internal root morphology were highlighted,
especially in Type I configurations. It is
suggested to conduct further research using
diverse variables and diagnostic methods, such
as computed tomography, to more accurately
visualize variations in the canal system. The
study also emphasizes the importance of
investigating the configurations and
morphological variations found to improve
diagnosis and prevent potential failures in
endodontic treatments. Several limitations were
identified in the research, such as the lack of
studies using conventional radiography and
phosphor plate processing equipment in
Ecuador, as well as the scarcity of scientific
literature on this topic within the country.
Despite these challenges, the utility and validity
of radiography with phosphor plates for
diagnosing certain variations in root canal
anatomy are highlighted, as demonstrated in
this study and supported by previous research.
References
Alenezi, D., Nazhan, S., Maflehi, N., & Soman,
C. (2020). Morfología de la raíz y el
conducto de los dientes premolares
mandibulares en un kuwaití Subpoblación:
Un estudio clínico de CBCT. European
Endodontic Journal, 5(3), 248256.
https://doi.org/10.14744%2Feej.2020.40085
Arango, D., Jhonathan, J., Zamora, I., &
Morales, G. (2023). Protocolo para
diafanización dental. Revista Estomatología,
31(1).
https://doi.org/10.25100/re.v31i1.12199
Barrón, A., & Sánchez, H. (2019).
Identificación de variables en la morfología
de conductos en primeros y segundos
premolares mandibulares, mediante
Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 6 No. 6.1
Edición Especial II 2025
Página 830
tomografía computarizada Cone Beam en
población nayarita. ORAL 2019, 20(63),
1709-1713.
https://www.medigraphic.com/pdfs/oral/ora
-2019/ora1963a.pdf
Berchialla, G., Portigliatti, R., Gartne, S.,
Mugnolo, C., Vacaflor, A., Uribe, L., &
Mangeuad, A. M. (2022). Estudio de la
sección transversal de premolares inferiores
con tomografía computada de haz cónico.
Revista Methodo, 7(2), 94-108.
https://doi.org/10.22529/me.2022.7(2)07
Bolaños, P., & Macías, S. (2018).
Caracterización y prevalencia de la
configuración anatómica de las raíces y del
sistema de conductos en premolares
mandibulares, utilizando tomografía
computarizada de haz de cono en una
población colombiana
https://repositorioslatinoamericanos.uchile.c
l/handle/2250/3613837
Brau, E. (2014). Anatomía Dental Interna. En
C. Canalda, & E. Brau, Endodoncia Técnicas
Clínicas y Bases científicas. Elsevier
Masson.
Burns, R., & Herbranson, E. (2002). Morfología
del diente y preparación de la cavidad. En S.
Cohe, & R. Burns, Vías de la pulpa (8va
edición ed.).
Cano, E. (2016). Morfología de cámara pulpar,
conductos radiculares y ápice de premolares
Inferiores usando CBCT.
https://ru.dgb.unam.mx/bitstream/20.500.14
330/TES01000743676/3/0743676.pdf
Cardona, J., & Fernández, R. (2015). Anatomía
radicular, una mirada desde la microcirugía
endodóntica: Revisión. CES Odontología,
28(2), 70-99.
http://www.scielo.org.co/pdf/ceso/v28n2/v2
8n2a07.pdf
Carosi, M., Antoniuk, A., Benítez, L., Nart, L.,
del Valle Molina, G., lix, A., Sanchis, S.,
& Vásquez, D. (2022). Estudio de la
morfología de los conductos radiculares de
los primeros premolares superiores en
tomografía computarizada de haz cónico.
Revista Asociación acción Dental Mexicana,
79(6), 312-317.
https://doi.org/10.35366/108704
Castillo, A., Lozada, Y., Hernández, G.,
Granda, W., & Aguayza, M. (2023). El
sistema de conductos radiculares de
segundos premolares maxilares y mandi
bulares mediante la técnica de diafanización
dental. Revista Odontología, 26(2), 22-26.
https://dialnet.unirioja.es/servlet/articulo?co
digo=9203986
Checya, B., & Andrade, E. (2022). Morfología
interna de conductos radiculares de
premolares superiores e inferiores según la
clasificación de Vertucci en tomografías de
pacientes que acudieron a la Clínica Luis
vallejos Santoni UAC 2019. Repositorio
Digital De la Universidad Andina de Cusco.
Cobos, D., & Moscosco, M. (2016). Estudio
morfológico de los canales radiculares del
primer premolar superior, utilizando
radiografía periapical y tomografía de haz
cónico, en el centro radiológico dental-
maxilofacial, Cuenca 2015. Odontología
Activa UCACUE, 1(1), 56-65.
https://oactiva.ucacue.edu.ec/index.php/oact
iva/article/download/193/318?inline=1
Colquehuanca, J. (2021). Variantes de la
anatomía interna del primer premolar
inferior permanente mediante la técnica de
diafanización. Universidad José Carlos
Mariategui, Facultad de Ciencias de la Salud,
Perú.
Greco, Y., García, J., Lozano, V., &
Manzanares, M. (2009). Morfología de los
conductos radiculares de premolares
superiores e inferiores. Endodoncia, 27(1),
13-18.
https://diposit.ub.edu/dspace/bitstream/2445
/62208/1/580906.pdf
Játiva, M., Cevallos, E., Aponte, R., Monar, J.,
& Viteri, A. (2022). Manejo endodóntico de
variaciones anatómicas radiculares en
primeros premolares inferiores.
Odontoinvestigación, 8(2), 1-14.
https://dx.doi.org/10.18272/oi.v7i2.2084
Labarta, A., Cuadros, M., Gualtieri, A., &
Sierra, L. (2016). Evaluación de la
morfología radicular interna de premolares
inferiores mediante la técnica. Revista
Científica Odontológica, 12(1), 19-27.
Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 6 No. 6.1
Edición Especial II 2025
Página 831
Lemos, M., Coutinho, T., Pérez, A., Medeiros,
T., & Marceliano, M. (2022). Morfología del
conducto radicular de 1.316 premolares de
individuos brasileños: análisis in vivo
mediante tomografía computarizada de haz
cónico. Acta Odontológica
Latinoamericana, 35(2), 105- 110.
http://dx.doi.org/10.54589/aol.35/2/105
Maynard, M., Quezada, A., & Cordero, S.
(2023). Prevalencia del segundo conducto en
dientes anteroinferiores usando Tomografía
Computadorizada Cone Beam. Revista
Odontología. Vital, 1(38), 45-58.
https://revistas.ulatina.ac.cr/index.php/odont
ologiavital/article/view/531/675
Moenne, M. (2013). Anatomía de premolares.
Universidad de Valparaíso.
Herrera, K., Steinfort, K., Zaror, C., & Abarca,
J. (2021). Root Anatomy and Canal
Configuration of Maxillary Premolars: A
Cone-beam Computed Tomography Study.
International Journal of Morphology, 39(2).
https://www.scielo.cl/scielo.php?script=sci_
arttext&pid=S0717-95022021000200463
Monardes, H., Herrera, K., Vargas, J., Steinfort,
K., Zaror, C., & Abarca, J. (2021). Anatomía
de la Raíz y Configuración del Conducto de
los Premolares Maxilares: Estudio de
Tomografía Computarizada de Haz Cónico.
International Journal of Morphology, 39(2),
463-468. http://dx.doi.org/10.4067/S0717-
95022021000200463
Montán, L., & Pedraza, R. (2018). Variaciones
anatómicas internas de los primeros
premolares mediante diafanización in vitro y
radiografía. Revista de Investigación E
Información en Salud, 13(32), 35-45.
https://doi.org/10.52428/20756208.v13i32.6
27
Moreno, J., Duarte, M., Marceliano, Marilia,
Alves, F., Siqueira, J., & Provenzano, J.
(2021). Micro-computed tomographic
evaluation of root canal morphology in
mandibular first premolars from a
Colombian population. Acta Odontológica
Latinoamericana, 34(1), 50- 55.
http://dx.doi.org/10.54589/aol.34/1/050
Ontaneda, J. (2019). Evaluación del sistema de
conductos en raíces diafanizadas.
Universidad de Guayaquil, Facultad de
Odontología, Guayaquil.
Oporto, G., Fuentes, R., & Soto, C. (2010).
Variaciones Anatómicas Radiculares y
Sistemas de Canales. International Journal
of Morphology, 28(3), 945-950.
Quispe, P., & Valero, J. (2021). Estudio de la
morfología del conducto radicular según la
clasificación de Vertucci en los premolares
superiores e inferiores con el uso de la
tomografía computarizada de haz cónico en
la clínica de la UCSM. Arequipa, 2019.
Repositorio de Tesis UCSM.
https://repositorio.ucsm.edu.pe/bitstream/ha
ndle/20.500.12920/11141/64.3060.O.pdf?se
quence=1&isAllowed=y
Retamoso, M. (2021). Análisis de la morfología
radicular interna de primeros premolares
superiores mediante tomografía de haz
cónico en una población de jóvenes
peruanos. Universidad Nacional Federico
Villareal.
http://repositorio.unfv.edu.pe/bitstream/han
dle/20.500.13084/5479/unfv_retamoso%20
palomino%2cmelissa%20romina_titulo%20
profesional_2021.pdf?sequence=3
Rincón, M., Martínez, R., Duarte, M., &
Moreno, J. (2022). Reproducibilidad y
validez de criterio de dos técnicas
radiográficas para variaciones de premolares
mandibulares comparadas con CBCT.
Revista Cuidarte, 13(1).
http://dx.doi.org/10.15649/cuidarte.2300
Sacoto, F. (2018). Identificación y Manejo
Endodóntico de Primer Premolar Maxilar
con tres Raíces: Reporte de un Caso. Revista
Canal Abierto (37), 26-30.
https://www.canalabierto.cl/numero-
37/identificacion-y-manejo-endodontico-de-
primer-premolar-maxilar-con-tres-raices-
reporte-de-un-caso
Soares, I., Goldberg, F., & Silveira, N. (2002).
Configuración interna del diente. En I.
Soares, & F. Goldberg, Endodoncia Técnicas
y Fundamentos. Editorial Médica
Panamericana.
Taveras, C., Fiori, G., & Agudelo, A. (2021). La
imagenología en el diagnóstico y la
planificación de sistemas de conductos
Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 6 No. 6.1
Edición Especial II 2025
Página 832
radiculares: una revisión actualizada. Revista
Científica Odontológica, 9(1).
http://dx.doi.org/10.21142/2523-2754-0901-
2021-045
Tomas, P., Raffaeli, N., & Villalba, P. (2022).
Las imágenes radiográficas digitales
intraorales son capturadas por un sensor
digital (almacenamiento de fósforo
fotoestimulable) y se muestra en un monitor.
Una vez expuesta con un equipo de rx dental
a dosis bajas y tiempos de exposición
reducidas. Universidad Nacional de La
Plata, Facultad de Odontología.
Urrutia, D., Pablo, O., & Visvisian, M. (2017).
Estudio morfométrico del conducto
mesiovestibular del segundo molar superior
permanente en distintos grupos etarios.
ORAL, 18(57), 1474-1480.
https://www.medigraphic.com/cgi-
bin/new/resumen.cgi?IDARTICULO=7818
4
Vega, E., Tiesler, V., Chi-Keb, J., Ramírez, M.
H., & Cucina, A. (2018). Morfología del
Conducto Radicular de Primeros Premolares
Mandibulares en una Población Yucateca
Usando Tomografía Computarizada: Estudio
in vitro. International Journal of
Morphology, 36(4), 1216-1221.
https://dx.doi.org/10.4067/S0717-
95022018000401216
Vertucci, F., & Haddix, J. (2011). Morfología
del diente y preparación de la cavidad de
acceso. En K. Hargreaves, & S. Cohen,
Cohen Vías De la Pulpa (décima edición
ed.).
Yesim, D., & Seher, K. (2019). Determinación
y clasificación de artefactos y errores en
placas de almacenamiento de fósforo
intraoral. Imaging Science in Dentistry,
49(3), 219-228.
https://doi.org/10.5624%2Fisd.2019.49.3.21
9
Esta obra está bajo una licencia de
Creative Commons Reconocimiento-No Comercial
4.0 Internacional. Copyright © Leonela Karelys
Zambrano Balcázar, Roberto Johnny Romero
Chévez, Dick Bryan Vera Morán, Bernarda Andrea
Sánchez Arteaga, Kevin Roberto Romero Díaz.