Página 522
64.1% en deformaciones, optimizando
simultáneamente la seguridad estructural y la
eficiencia computacional. Esta metodología
puede extrapolarse directamente a otras
aplicaciones de diseño de equipos
agroindustriales, proporcionando una base
técnica sólida para la toma de decisiones de
ingeniería y contribuyendo al desarrollo de
estándares de diseño más rigurosos que
promuevan la competitividad y sostenibilidad
del sector agroindustrial.
Referencias Bibliográficas
Autodesk (2026). Autodesk Inventor Nastran
2026 user's guide. Autodesk.
Briassoulis, D. (2000). Equivalent orthotropic
properties of corrugated sheets under
buckling. Computers & Structures, 77(3),
257-270. https://doi.org/10.1016/S0045-
7949(99)00216-6
Cook, R., Malkus, D., Plesha, M., & Witt, R.
(2002). Concepts and applications of finite
element analysis (4th ed.). John Wiley &
Sons.
Ding, Y., Gravish, N., & Goldman, D. (2013).
Drag induced lift in granular media. Physical
Review Letters, 106(2), 028001.
https://doi.org/10.1103/PhysRevLett.106.02
8001
Gallego, E., González, C., Ramírez, Á., &
Ayuga, F. (2010). A simplified analytical
procedure for assessing the worst patch load
location on circular steel silos with
corrugated walls. Engineering Structures,
32(10), 3101-3109.
https://doi.org/10.1016/j.engstruct.2010.05.
026
Goodey, R., Brown, C., & Rotter, J. (2003).
Predicted patterns of filling pressures in thin-
walled square silos. Engineering Structures,
25(14), 1759-1769.
https://doi.org/10.1016/j.engstruct.2003.06.
001
Guaita, M., Aguado, P., & Ayuga, F. (2008).
Finite element analysis under different
boundary conditions of the filling of
cylindrical steel silos having an eccentric
hopper. Journal of Constructional Steel
Research, 64(4), 480-492.
https://doi.org/10.1016/j.jcsr.2007.10.005
Iwicki, P., Tejchman, J., & Chróścielewski, J.
(2011). Dynamic FE simulations of buckling
process in thin-walled cylindrical metal
silos. Thin-Walled Structures, 49(8), 1015-
1025.
https://doi.org/10.1016/j.tws.2011.03.016
Janssen, H. (1895). Versuche über
Getreidedruck in Silozellen. Zeitschrift des
Vereines deutscher Ingenieure, 39, 1045-
1049.
Kobyłka, R., & Molenda, M. (2014). DEM
simulations of loads on obstruction attached
to the wall of a model grain silo and of flow
disturbance around the obstruction. Powder
Technology, 256, 210-221.
https://doi.org/10.1016/j.powtec.2014.02.03
0
Mellmann, J., Hoffmann, T., & Fürll, C. (2014).
Mass flow during unloading of agricultural
bulk materials from silos depending on
particle form, flow properties and geometry.
Powder Technology, 253, 46-52.
https://doi.org/10.1016/j.powtec.2013.11.01
0
Meng, Q., Jofriet, J., & Negi, S. (1997a). Finite
element analysis of bulk solids flow, Part 1:
Development of a model based on a secant
constitutive relationship. Journal of
Agricultural Engineering Research, 67(4),
257-266.
https://doi.org/10.1006/jaer.1997.0167
Meng, Q., Jofriet, J., & Negi, S. (1997b). Finite
element analysis of bulk solids flow, Part 2:
Application to a parametric study. Journal of
Agricultural Engineering Research, 67(4),
267-275.
https://doi.org/10.1006/jaer.1997.0168
Negi, S., Lu, Z., & Jofriet, J. (1997). A
numerical model for flow of granular
materials in silos. Part 1: Model
development. Journal of Agricultural
Engineering Research, 68(3), 223-236.
https://doi.org/10.1006/jaer.1997.0195
Ooi, J., & Rotter, J. (1990). Wall pressures in
squat steel silos from simple finite element
analysis. Computers & Structures, 37(4),